归并排序算法

插入排序(英语:Insertion Sort)是一种简单直观的排序算法。它的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入。

归并排序(英语:Merge sort,或mergesort),是创建在归并操作上的一种有效的排序算法,效率为

O(nlog n)
。1945年由约翰·冯·诺伊曼首次提出。该算法是采用分治法(Divide and Conquer)的一个非常典型的应用,且各层分治递归可以同时进行。

概述

采用分治法:

  1. 分割:递归地把当前序列平均分割成两半。
  2. 集成:在保持元素顺序的同时将上一步得到的子序列集成到一起(归并)。

  • 数据结构 : 数组
  • 最坏时间复杂度 :
    Theta (nlog n)
  • 最优时间复杂度 :
    Theta (nlog n)
  • 平均时间复杂度 :
    Theta (nlog n)
  • 最坏空间复杂度 :
    Theta(n)

归并操作

归并操作(merge),也叫归并算法,指的是将两个已经排序的序列合并成一个序列的操作。归并排序算法依赖归并操作。

递归法(Top-down)

  1. 申请空间,使其大小为两个已经排序序列之和,该空间用来存放合并后的序列
  2. 设定两个指针,最初位置分别为两个已经排序序列的起始位置
  3. 比较两个指针所指向的元素,选择相对小的元素放入到合并空间,并移动指针到下一位置
  4. 重复步骤3直到某一指针到达序列尾
  5. 将另一序列剩下的所有元素直接复制到合并序列尾

迭代法(Bottom-up)

原理如下(假设序列共有 n 个元素):

  1. 将序列每相邻两个数字进行归并操作,形成 ceil(n/2) 个序列,排序后每个序列包含两/一个元素
  2. 若此时序列数不是1个则将上述序列再次归并,形成 ceil(n/4) 个序列,每个序列包含四/三个元素
  3. 重复步骤2,直到所有元素排序完毕,即序列数为1

动图演示

动图演示:使用合并排序为一列数字进行排序的过程

实现示例

C语言

迭代版:

int min(int x, int y) {
    return x < y ? x : y;
}
void merge_sort(int arr[], int len) {
    int *a = arr;
    int *b = (int *) malloc(len * sizeof(int));
    int seg, start;
    for (seg = 1; seg < len; seg += seg) {
        for (start = 0; start < len; start += seg * 2) {
            int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);
            int k = low;
            int start1 = low, end1 = mid;
            int start2 = mid, end2 = high;
            while (start1 < end1 && start2 < end2)
                b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
            while (start1 < end1)
                b[k++] = a[start1++];
            while (start2 < end2)
                b[k++] = a[start2++];
        }
        int *temp = a;
        a = b;
        b = temp;
    }
    if (a != arr) {
        int i;
        for (i = 0; i < len; i++)
            b[i] = a[i];
        b = a;
    }
    free(b);
}

递归版:

void merge_sort_recursive(int arr[], int reg[], int start, int end) {
    if (start >= end)
        return;
    int len = end - start, mid = (len >> 1) + start;
    int start1 = start, end1 = mid;
    int start2 = mid + 1, end2 = end;
    merge_sort_recursive(arr, reg, start1, end1);
    merge_sort_recursive(arr, reg, start2, end2);
    int k = start;
    while (start1 <= end1 && start2 <= end2)
        reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
    while (start1 <= end1)
        reg[k++] = arr[start1++];
    while (start2 <= end2)
        reg[k++] = arr[start2++];
    for (k = start; k <= end; k++)
        arr[k] = reg[k];
}

void merge_sort(int arr[], const int len) {
    int reg[len];
    merge_sort_recursive(arr, reg, 0, len - 1);
}

C++

迭代版:

template<typename T> // 整數或浮點數皆可使用,若要使用物件(class)時必須設定"小於"(<)的運算子功能
void merge_sort(T arr[], int len) {
    T *a = arr;
    T *b = new T[len];
    for (int seg = 1; seg < len; seg += seg) {
        for (int start = 0; start < len; start += seg + seg) {
            int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);
            int k = low;
            int start1 = low, end1 = mid;
            int start2 = mid, end2 = high;
            while (start1 < end1 && start2 < end2)
                b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];
            while (start1 < end1)
                b[k++] = a[start1++];
            while (start2 < end2)
                b[k++] = a[start2++];
        }
        T *temp = a;
        a = b;
        b = temp;
    }
    if (a != arr) {
        for (int i = 0; i < len; i++)
            b[i] = a[i];
        b = a;
    }
    delete[] b;
}

递归版:

void Merge(vector<int> &Array, int front, int mid, int end) {
    // preconditions:
    // Array[front...mid] is sorted
    // Array[mid+1 ... end] is sorted
    // Copy Array[front ... mid] to LeftSubArray
    // Copy Array[mid+1 ... end] to RightSubArray
    vector<int> LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);
    vector<int> RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);
    int idxLeft = 0, idxRight = 0;
    LeftSubArray.insert(LeftSubArray.end(), numeric_limits<int>::max());
    RightSubArray.insert(RightSubArray.end(), numeric_limits<int>::max());
    // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]
    for (int i = front; i <= end; i++) {
        if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {
            Array[i] = LeftSubArray[idxLeft];
            idxLeft++;
        } else {
            Array[i] = RightSubArray[idxRight];
            idxRight++;
        }
    }
}

void MergeSort(vector<int> &Array, int front, int end) {
    if (front >= end)
        return;
    int mid = front + (end - front) / 2;
    MergeSort(Array, front, mid);
    MergeSort(Array, mid + 1, end);
    Merge(Array, front, mid, end);
}

C#

public static List<int> sort(List<int> lst) {
    if (lst.Count <= 1)
        return lst;
    int mid = lst.Count / 2;
    List<int> left = new List<int>();  // 定义左侧List
    List<int> right = new List<int>(); // 定义右侧List
    // 以下兩個循環把 lst 分為左右兩個 List
    for (int i = 0; i < mid; i++)
        left.Add(lst[i]);
    for (int j = mid; j < lst.Count; j++)
        right.Add(lst[j]);
    left = sort(left);
    right = sort(right);
    return merge(left, right);
}
/// <summary>
/// 合併兩個已經排好序的List
/// </summary>
/// <param name="left">左側List</param>
/// <param name="right">右側List</param>
/// <returns></returns>
static List<int> merge(List<int> left, List<int> right) {
    List<int> temp = new List<int>();
    while (left.Count > 0 && right.Count > 0) {
        if (left[0] <= right[0]) {
            temp.Add(left[0]);
            left.RemoveAt(0);
        } else {
            temp.Add(right[0]);
            right.RemoveAt(0);
        }
    }
    if (left.Count > 0) {
        for (int i = 0; i < left.Count; i++)
            temp.Add(left[i]);
    }
    if (right.Count > 0) {
        for (int i = 0; i < right.Count; i++)
            temp.Add(right[i]);
    }
    return temp;
}

Ruby

def merge list
  return list if list.size < 2

  pivot = list.size / 2

  # Merge
  lambda { |left, right|
    final = []
    until left.empty? or right.empty?
      final << if left.first < right.first; left.shift else right.shift end
    end
    final + left + right
  }.call merge(list[0...pivot]), merge(list[pivot..-1])
end

Java

递归版:

static void merge_sort_recursive(int[] arr, int[] result, int start, int end) {
  if (start >= end)
    return;
  int len = end - start, mid = (len >> 1) + start;
  int start1 = start, end1 = mid;
  int start2 = mid + 1, end2 = end;
  merge_sort_recursive(arr, result, start1, end1);
  merge_sort_recursive(arr, result, start2, end2);
  int k = start;
  while (start1 <= end1 && start2 <= end2)
    result[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];
  while (start1 <= end1)
    result[k++] = arr[start1++];
  while (start2 <= end2)
    result[k++] = arr[start2++];
  for (k = start; k <= end; k++)
    arr[k] = result[k];
}
public static void merge_sort(int[] arr) {
  int len = arr.length;
  int[] result = new int[len];
  merge_sort_recursive(arr, result, 0, len - 1);
}

迭代版:

public static void merge_sort(int[] arr) {
  int[] orderedArr = new int[arr.length];
        for (int i = 2; i < arr.length * 2; i *= 2) {
            for (int j = 0; j < (arr.length + i - 1) / i; j++) {
                int left = i * j;
                int mid = left + i / 2 >= arr.length ? (arr.length - 1) : (left + i / 2);
                int right = i * (j + 1) - 1 >= arr.length ? (arr.length - 1) : (i * (j + 1) - 1);
                int start = left, l = left, m = mid;
                while (l < mid && m <= right) {
                    if (arr[l] < arr[m]) {
                        orderedArr[start++] = arr[l++];
                    } else {
                        orderedArr[start++] = arr[m++];
                    }
                }
                while (l < mid)
                    orderedArr[start++] = arr[l++];
                while (m <= right)
                    orderedArr[start++] = arr[m++];
                System.arraycopy(orderedArr, left, arr, left, right - left + 1);
            }
        } 
}

PHP

function merge_sort($arr) {
  $len = count($arr);
  if ($len <= 1)
    return $arr;
  $half = ($len>>1) + ($len & 1);
  $arr2d = array_chunk($arr, $half);
  $left = merge_sort($arr2d[0]);
  $right = merge_sort($arr2d[1]);
  while (count($left) && count($right))
    if ($left[0] < $right[0])
      $reg[] = array_shift($left);
    else
      $reg[] = array_shift($right);
  return array_merge($reg, $left, $right);
}

$arr = array(21, 34, 3, 32, 82, 55, 89, 50, 37, 5, 64, 35, 9, 70);
$arr = merge_sort($arr);
for ($i = 0; $i < count($arr); $i++) {
  echo $arr[$i] . ' ';
}

Python

# Recursively implementation of Merge Sort
def merge(left, right):
    result = []
    while left and right:
        if left[0] <= right[0]:
            result.append(left.pop(0))
        else:
            result.append(right.pop(0))
    if left:
        result += left
    if right:
        result += right
    return result


def merge_sort(L):
    if len(L) <= 1:
        # When D&C to 1 element, just return it
        return L
    mid = len(L) // 2
    left = L[:mid]
    right = L[mid:]

    left = merge_sort(left)
    right = merge_sort(right)
    # conquer sub-problem recursively
    return merge(left, right)
    # return the answer of sub-problem


if __name__ == "__main__":
    test = [1, 4, 2, 3.6, -1, 0, 25, -34, 8, 9, 1, 0]
    print("original:", test)
    print("Sorted:", merge_sort(test))

Erlang

%% @doc 归并排序
g_sort([]) ->
    [];
g_sort([T]) ->
    [T];
g_sort(L) ->
    g_sort(L, length(L)).

g_sort([_, _ | _] = L, Length) ->
    SplitNum = trunc(Length / 2),
    {L1, L2} = lists:split(SplitNum, L),
    g_merge(g_sort(L1, SplitNum), g_sort(L2, Length - SplitNum));
g_sort(L, _Length) ->
    L.

%% 已经排好序的两个list合并
g_merge([], L2) ->
    L2;
g_merge(L1, []) ->
    L1;
g_merge([T1 | Rest1] = L1, [T2 | Rest2] = L2) ->
    if
        T1 =< T2 -> [T1 | g_merge(Rest1, L2)];
        true -> [T2 | g_merge(L1, Rest2)]
    end.

Javascript

function merge(left, right){
  var result = [];
  while(left.length > 0 && right.length > 0){
    if(left[0] < right[0]){
      result.push(left.shift());
    }else{
      result.push(right.shift());
    }
  }
  return result.concat(left, right);
}

function mergeSort(arr){
  if(arr.length <=1) return arr;
  var middle = Math.floor(arr.length / 2);
  var left = arr.slice(0, middle);
  var right = arr.slice(middle);
  return merge(mergeSort(left), mergeSort(right));
}

Go

迭代法

package main

import (
  "fmt"
)

func MergeSort(array []int) []int{
  n := len(array)
  if n < 2 {
    return array
  }
  key := n / 2
  left := MergeSort(array[0:key])
  right := MergeSort(array[key:])
  return merge(left, right)
}

func merge(left []int, right []int) []int{
  newArr := make([]int, len(left)+len(right))
  i, j, index :=0,0,0
  for {
    if left[i] > right[j] {
      newArr[index] = right[j]
      index++
      j++
      if j == len(right) {
        copy(newArr[index:], left[i:])
        break
      }

    }else{
      newArr[index] = left[i]
      index++
      i++
      if i == len(left) {
        copy(newArr[index:], right[j:])
        break
      }
    }
  }
  return newArr
}

func main() {
  array := []int{55, 94, 87, 1, 4, 32, 11, 77, 39, 42, 64, 53, 70, 12, 9}
  fmt.Println(array)
  array = MergeSort(array)
  fmt.Println(array)

}

递归版

package main

import (
  "fmt"
)

func merge(data []int) []int {
  sum := len(data)
  if sum <= 1 {
    return data
  }
  left := data[0 : sum/2]
  lSize := len(left)
  if lSize >= 2 {
    left = merge(left)
  }
  right := data[sum/2:]
  rSize := len(right)
  if rSize >= 2 {
    right = merge(right)
  }
  j := 0
  t := 0
  arr := make([]int, sum)
  fmt.Println(left, right, data)
  for i := 0; i < sum; i++ {
    if j < lSize && t < rSize {
      if left[j] <= right[t] {
        arr[i] = left[j]
        j++
      } else {
        arr[i] = right[t]
        t++
      }  
    }  else if j >= lSize{
      arr[i] = right[t]
      t++
    }  else if t >= rSize{
      arr[i] = left[j]
      j++
    }
  }
  return arr
}

func main() {
  var aa = []int{1000, 2, 31, 34, 5, 9, 7, 4, 6, 89, 90, 99, 99, 99, 99, 99}
  
  var bb = merge(aa)
  fmt.Println(bb)
}

算法复杂度

比较操作的次数介于

(n\log n)/2
。 赋值操作的次数是
(2nlog n)
。归并算法的空间复杂度为:
Theta (n)